CONVERGENCE OF NEWTON'S METHOD UNDER THE GAMMA CONDITION
نویسندگان
چکیده
منابع مشابه
Local Convergence of Newton’s Method Under a Weak Gamma Condition
We provide a local convergence analysis of Newton’s method under a weak gamma condition on a Banach space setting. It turns out that under the same computational cost and weaker hypotheses than in [4], [5], [7], we can obtain a larger radius of convergence and finer estimates on the distances involved. AMS (MOS) Subject Classification Codes: 65G99, 65B05, 47H17, 49M15.
متن کاملConvergence Criterion and Convergence Ball of the King-werner Method under the Radius Lipschitz Condition
The convergence of the King-Werner method for finding zeros of nonlinear operators is analyzed. Under the hypothesis that the derivative of f satisfies the radius Lipschitz condition with L-average, the convergence criterion and the convergence ball for the King-Werner method are given. Applying the results to some particular functions L(u), we get the convergence theorems in [7] and [1] as wel...
متن کاملA convergence analysis of the iteratively regularized Gauss--Newton method under the Lipschitz condition
In this paper we consider the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed inverse problems. Under merely the Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense.
متن کاملConvergence Rate of The Trust Region Method for Nonlinear Equations Under Local Error Bound Condition
In this paper, we present a new trust region method for nonlinear equations with the trust region converging to zero. The new method preserves the global convergence of the traditional trust region methods in which the trust region radius will be larger than a positive constant. We study the convergence rate of the new method under the local error bound condition which is weaker than the nonsin...
متن کاملA convergence analysis of the iteratively regularized Gauss-Newton method under Lipschitz condition
In this paper we consider the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed inverse problems. Under merely Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 2006
ISSN: 0716-0917
DOI: 10.4067/s0716-09172006000300006